Buscar este blog

sábado, 28 de mayo de 2011

VIDEOS BASES DE DATOS

BASES DE DATOS


Una base de datos o banco de datos (en ocasiones abreviada con la sigla BD o con la abreviatura b. d.) es un conjunto de datos pertenecientes a un mismo contexto y almacenados sistemáticamente para su posterior uso. En este sentido, una biblioteca puede considerarse una base de datos compuesta en su mayoría por documentos y textos impresos en papel e indexados para su consulta. En la actualidad, y debido al desarrollo tecnológico de campos como la informática y la electrónica, la mayoría de las bases de datos están en formato digital (electrónico), que ofrece un amplio rango de soluciones al problema de almacenar datos.
Existen programas denominados sistemas gestores de bases de datos, abreviado SGBD, que permiten almacenar y posteriormente acceder a los datos de forma rápida y estructurada. Las propiedades de estos SGBD, así como su utilización y administración, se estudian dentro del ámbito de la informática.
Las aplicaciones más usuales son para la gestión de empresas e instituciones públicas. También son ampliamente utilizadas en entornos científicos con el objeto de almacenar la información experimental.
Aunque las bases de datos pueden contener muchos tipos de datos, algunos de ellos se encuentran protegidos por las leyes de varios países. Por ejemplo, en España los datos personales se encuentran protegidos por la Ley Orgánica de Protección de Datos de Carácter Personal(LOPD).

TIPOS DE BASES DE DATOS

Las bases de datos pueden clasificarse de varias maneras, de acuerdo al contexto que se esté manejando, la utilidad de las mismas o las necesidades que satisfagan.

Según la variabilidad de los datos almacenados

Bases de datos estáticas

Éstas son bases de datos de sólo lectura, utilizadas primordial mente para almacenar datos históricos que posteriormente se pueden utilizar para estudiar el comportamiento de un conjunto de datos a través del tiempo, realizar proyecciones y tomar decisiones.

Bases de datos dinámicas

Éstas son bases de datos donde la información almacenada se modifica con el tiempo, permitiendo operaciones como actualización, borrado y adición de datos, además de las operaciones fundamentales de consulta. Un ejemplo de esto puede ser la base de datos utilizada en un sistema de información de un supermercado, una farmacia, un videoclub o una empresa;

Según el contenido

Bases de datos bibliográficas

Solo contienen un subrogante (representante) de la fuente primaria, que permite localizarla. Un registro típico de una base de datos bibliográfica contiene información sobre el autor, fecha de publicación, editorial, título, edición, de una determinada publicación, etc. Puede contener un resumen o extracto de la publicación original, pero nunca el texto completo, porque si no, estaríamos en presencia de una base de datos a texto completo (o de fuentes primarias —ver más abajo). Como su nombre lo indica, el contenido son cifras o números. Por ejemplo, una colección de resultados de análisis de laboratorio, entre otras.

Bases de datos de texto completo

Almacenan las fuentes primarias, como por ejemplo, todo el contenido de todas las ediciones de una colección de revistas científicas.

Directorios

Un ejemplo son las guías telefónicas en formato electrónico.

Bases de datos o "bibliotecas" de información química o biológica

Son bases de datos que almacenan diferentes tipos de información proveniente de la química, las ciencias de la vida o médicas. Se pueden considerar en varios subtipos:
  • Las que almacenan secuencias de nucleido o proteínas.
  • Las bases de datos de rutas metabólicas.
  • Bases de datos de estructura, comprende los registros de datos experimentales sobre estructuras 3D de biomoléculas-
  • Bases de datos clínicas.
  • Bases de datos bibliográficas (biológicas, químicas, médicas y de otros campos): PubChemMedlineEBSCOhost.

Modelos de bases de datos

Además de la clasificación por la función de las bases de datos, éstas también se pueden clasificar de acuerdo a su modelo de administración de datos.
Un modelo de datos es básicamente una "descripción" de algo conocido como contenedor de datos (algo en donde se guarda la información), así como de los métodos para almacenar y recuperar información de esos contenedores. Los modelos de datos no son cosas físicas: son abstracciones que permiten la implementación de un sistema eficiente de base de datos; por lo general se refieren a algoritmos, y conceptos matemáticos.
Algunos modelos con frecuencia utilizados en las bases de datos:

Bases de datos jerárquicas

Éstas son bases de datos que, como su nombre indica, almacenan su información en una estructura jerárquica. En este modelo los datos se organizan en una forma similar a un árbol (visto al revés), en donde un nodo padre de información puede tener varios hijos. El nodo que no tiene padres es llamado raíz, y a los nodos que no tienen hijos se los conoce como hojas.
Las bases de datos jerárquicas son especialmente útiles en el caso de aplicaciones que manejan un gran volumen de información y datos muy compartidos permitiendo crear estructuras estables y de gran rendimiento.
Una de las principales limitaciones de este modelo es su incapacidad de representar eficientemente la redundancia de datos.

Base de datos de red

Éste es un modelo ligeramente distinto del jerárquico; su diferencia fundamental es la modificación del concepto de nodo: se permite que un mismo nodo tenga varios padres (posibilidad no permitida en el modelo jerárquico).
Fue una gran mejora con respecto al modelo jerárquico, ya que ofrecía una solución eficiente al problema de redundancia de datos; pero, aun así, la dificultad que significa administrar la información en una base de datos de red ha significado que sea un modelo utilizado en su mayoría por programadores más que por usuarios finales.

Bases de datos transaccionales

Son bases de datos cuyo único fin es el envío y recepción de datos a grandes velocidades, estas bases son muy poco comunes y están dirigidas por lo general al entorno de análisis de calidad, datos de producción e industrial, es importante entender que su fin único es recolectar y recuperar los datos a la mayor velocidad posible, por lo tanto la redundancia y duplicación de información no es un problema como con las demás bases de datos, por lo general para poderlas aprovechar al máximo permiten algún tipo de conectividad a bases de datos relacionales.

Bases de datos relacionales

Éste es el modelo utilizado en la actualidad para modelar problemas reales y administrar datos dinámicamente. Tras ser postulados sus fundamentos en 1970 por Edgar Frank Codd, de los laboratorios IBM en San José (California), no tardó en consolidarse como un nuevo paradigma en los modelos de base de datos. Su idea fundamental es el uso de "relaciones". Estas relaciones podrían considerarse en forma lógica como conjuntos de datos llamados "tuplas". Pese a que ésta es la teoría de las bases de datos relacionales creadas por Codd, la mayoría de las veces se conceptualiza de una manera más fácil de imaginar. Esto es pensando en cada relación como si fuese una tabla que está compuesta por registros (las filas de una tabla), que representarían las tuplas, y campos (las columnas de una tabla).
En este modelo, el lugar y la forma en que se almacenen los datos no tienen relevancia (a diferencia de otros modelos como el jerárquico y el de red). Esto tiene la considerable ventaja de que es más fácil de entender y de utilizar para un usuario esporádico de la base de datos. La información puede ser recuperada o almacenada mediante "consultas" que ofrecen una amplia flexibilidad y poder para administrar la información.
El lenguaje más habitual para construir las consultas a bases de datos relacionales es SQLStructured Query Language o Lenguaje Estructurado de Consultas, un estándar implementado por los principales motores o sistemas de gestión de bases de datos relacionales.
Durante su diseño, una base de datos relacional pasa por un proceso al que se le conoce como normalización de una base de datos.
Durante los años 80 la aparición de BASE produjo una revolución en los lenguajes de programación y sistemas de administración de datos. Aunque nunca debe olvidarse que dBase no utilizaba SQL como lenguaje base para su gestión.

Bases de datos multidimensionales

Son bases de datos ideadas para desarrollar aplicaciones muy concretas, como creación de Cubos OLAP. Básicamente no se diferencian demasiado de las bases de datos relacionales (una tabla en una base de datos relacional podría serlo también en una base de datos multidimensional), la diferencia está más bien a nivel conceptual; en las bases de datos multidimensionales los campos o atributos de una tabla pueden ser de dos tipos, o bien representan dimensiones de la tabla, o bien representan métricas que se desean estudiar.

Bases de datos orientadas a objetos

Este modelo, bastante reciente, y propio de los modelos informáticos orientados a objetos, trata de almacenar en la base de datos los objetos completos (estado y comportamiento).
Una base de datos orientada a objetos es una base de datos que incorpora todos los conceptos importantes del paradigma de objetos:
  • Encapsulación - Propiedad que permite ocultar la información al resto de los objetos, impidiendo así accesos incorrectos o conflictos.
  • Herencia - Propiedad a través de la cual los objetos heredan comportamiento dentro de una jerarquía de clases.
  • Polimorfismo - Propiedad de una operación mediante la cual puede ser aplicada a distintos tipos de objetos.
En bases de datos orientadas a objetos, los usuarios pueden definir operaciones sobre los datos como parte de la definición de la base de datos. Una operación (llamada función) se especifica en dos partes. La interfaz (o signatura) de una operación incluye el nombre de la operación y los tipos de datos de sus argumentos (o parámetros). La implementación (o método) de la operación se especifica separadamente y puede modificarse sin afectar la interfaz. Los programas de aplicación de los usuarios pueden operar sobre los datos invocando a dichas operaciones a través de sus nombres y argumentos, sea cual sea la forma en la que se han implementado. Esto podría denominarse independencia entre programas y operaciones.
SQL:2003, es el estándar de SQL92 ampliado, soporta los conceptos orientados a objetos y mantiene la compatibilidad con SQL92.

Bases de datos documentales

Permiten la indexación a texto completo, y en líneas generales realizar búsquedas más potentes. Tesaurus es un sistema de índices optimizado para este tipo de bases de datos.

Bases de datos deductivas

Un sistema de base de datos deductiva, es un sistema de base de datos pero con la diferencia de que permite hacer deducciones a través de inferencias. Se basa principalmente en reglas y hechos que son almacenados en la base de datos. Las bases de datos deductivas son también llamadas bases de datos lógicas, a raíz de que se basa en lógica matemática.

Gestión de bases de datos distribuida (SGBD)

la base de datos y el software SGBD pueden estar distribuidos en múltiples sitios conectados por una red. Hay de dos tipos:
1. Distribuidos homogéneos: utilizan el mismo SGBD en múltiples sitios.
2. Distribuidos heterogéneos: Da lugar a los SGBD federados o sistemas multibase de datos en los que los SGBD participantes tienen cierto grado de autonomía local y tienen acceso a varias bases de datos autónomas preexistentes almacenados en los SGBD, muchos de estos emplean una arquitectura cliente-servidor.
Estas surgen debido a la existencia física de organismos descentralizados. Esto les da la capacidad de unir las bases de datos de cada localidad y acceder así a distintas universidades, sucursales de tiendas, etcétera.

NORMALIZACIÓN DE BASES DE DATOS

Terminología relacional equivalente

Figura 1.0: Trabajo (Código, Nombre, Posición, Salario), donde Código es la Clave Primaria.
  • Relación = tabla o archivo
  • Registro = registro, fila o renglón
  • Atributo = columna o campo
  • Clave = llave o código de identificación
  • Clave Candidata = superclave mínima
  • Clave Primaria = clave candidata elegida
  • Clave Ajena = clave externa o clave foránea
  • Clave Alternativa = clave secundaria
  • Dependencia Multivaluada = dependencia multivalor
  • RDBMS = Del inglés Relational Data Base Manager System que significa, Sistema Gestor de Bases de Datos Relacionales.
  • 1FN = Significa, Primera Forma Normal o 1NF del inglés First Normal Form.
Los términos Relación, Tupla y Atributo derivan del álgebra y cálculo relacional, que constituyen la fuente teórica del modelo de base de datos relacional.
Todo atributo en una tabla tiene un dominio, el cual representa el conjunto de valores que el mismo puede tomar. Una instancia de una tabla puede verse entonces como un subconjunto del producto cartesiano entre los dominios de los atributos. Sin embargo, suele haber algunas diferencias con la analogía matemática, ya que algunos RDBMS permiten filas duplicadas, entre otras cosas. Finalmente, una tupla puede razonarse matemáticamente como un elemento del producto cartesiano entre los dominio.

Dependencia

Dependencia funcional

B es funcionalmente dependiente de A.
Una dependencia funcional es una conexión entre uno o más atributos. Por ejemplo si se conoce el valor deFechaDeNacimiento podemos conocer el valor de Edad.
Las dependencias funcionales del sistema se escriben utilizando una flecha, de la siguiente manera:
FechaDeNacimiento \rightarrow Edad
Aquí a FechaDeNacimiento se le conoce como un determinante. Se puede leer de dos formas FechaDeNacimientodetermina a Edad o Edad es funcionalmente dependiente de FechaDeNacimiento. De la normalización (lógica) a la implementación (física o real) puede ser sugerible tener éstas dependencias funcionales para lograr la eficiencia en las tablas.

Propiedades de la Dependencia funcional

Existen 3 axiomas de Armstrong:

Dependencia funcional Reflexiva

Si "x" está incluido en "x" entonces x \rightarrow x A partir de cualquier atributo o conjunto de atributos siempre puede deducirse él mismo. Si la dirección o el nombre de una persona están incluidos en el DNI, entonces con el DNI podemos determinar la dirección o su nombre.

Dependencia funcional Aumentativa

x \rightarrow y entonces xz \rightarrow yz
DNI \rightarrow nombre
DNI,dirección \rightarrow nombre,dirección
Si con el DNI se determina el nombre de una persona, entonces con el DNI más la dirección también se determina el nombre o su dirección.

Dependencia funcional transitiva

Dependencia funcional transitiva.
Sean X, Y, Z tres atributos (o grupos de atributos) de la misma entidad. Si Y depende funcionalmente de X yZ de Y, pero X no depende funcionalmente de Y, se dice entonces que Z depende transitivamente de X. Simbólicamente sería:
X \rightarrow Y \rightarrow Z entonces X \rightarrow Z
FechaDeNacimiento \rightarrow Edad
Edad \rightarrow Conducir
FechaDeNacimiento \rightarrow Edad \rightarrow Conducir
Entonces tenemos que FechaDeNacimiento determina a Edad y la Edad determina a Conducir, indirectamente podemos saber a través de FechaDeNacimiento a Conducir (En muchos países, una persona necesita ser mayor de cierta edad para poder conducir un automóvil, por eso se utiliza este ejemplo).

Propiedades deducidas

Unión

x \rightarrow y y x \rightarrow z entonces x \rightarrow yz

Pseudo-transitiva

x \rightarrow y y wy \rightarrow z entonces wx \rightarrow z

Descomposición

x \rightarrow y y z está incluido en y entonces x \rightarrow z




Claves

Una clave primaria es aquella columna (o conjunto de columnas) que identifica únicamente a una fila. La clave primaria es un identificador que va a ser siempre único para cada fila. Se acostumbra a poner la clave primaria como la primera columna de la tabla pero es más una conveniencia que una obligación. Muchas veces la clave primaria es numérica auto-incrementada, es decir, generada mediante una secuencia numérica incrementada automáticamente cada vez que se inserta una fila.
En una tabla puede que tengamos más de una columna que puede ser clave primaria por sí misma. En ese caso se puede escoger una para ser la clave primaria y las demás claves serán claves candidatas.
Una clave ajena (foreign key o clave foránea) es aquella columna que existiendo como dependiente en una tabla, es a su vez clave primaria en otra tabla.
Una clave alternativa es aquella clave candidata que no ha sido seleccionada como clave primaria, pero que también puede identificar de forma única a una fila dentro de una tabla. Ejemplo: Si en una tabla clientes definimos el número de documento (id_cliente) como clave primaria, el número de seguro social de ese cliente podría ser una clave alternativa. En este caso no se usó como clave primaria porque es posible que no se conozca ese dato en todos los clientes.
Una clave compuesta es una clave que está compuesta por más de una columna.
La visualización de todas las posibles claves candidatas en una tabla ayudan a su optimización. Por ejemplo, en una tabla PERSONA podemos identificar como claves su DNI, o el conjunto de su nombre, apellidos, fecha de nacimiento y dirección. Podemos usar cualquiera de las dos opciones o incluso todas a la vez como clave primaria, pero es más óptimo en la mayoría de sistemas la elección del menor número de columnas como clave primaria.


Formas Normales

Las formas normales son aplicadas a las tablas de una base de datos. Decir que una base de datos está en la forma normal N es decir que todas sus tablas están en la forma normal N.
Diagrama de inclusión de todas las formas normales.
En general, las primeras tres formas normales son suficientes para cubrir las necesidades de la mayoría de las bases de datos. El creador de estas 3 primeras formas normales (o reglas) fue Edgar F. Codd.

Primera Forma Normal (1FN)

Una tabla está en Primera Forma Normal si:
  • Todos los atributos son atómicos. Un atributo es atómico si los elementos del dominio son indivisibles, mínimos.
  • La tabla contiene una clave primaria unica.
  • La clave primaria no contiene atributos nulos.
  • No debe de existir variación en el número de columnas.
  • Los Campos no clave deben identificarse por la clave (Dependencia Funcional)
  • Debe Existir una independencia del orden tanto de las filas como de las columnas, es decir, si los datos cambian de orden no deben cambiar sus significados
Una tabla no puede tener múltiples valores en cada columna. Los datos son atómicos. (Si a cada valor de X le pertenece un valor de Y y viceversa)
Esta forma normal elimina los valores repetidos dentro de una BD

Segunda Forma Normal (2FN)

Dependencia Funcional. Una relación está en 2FN si está en 1FN y si los atributos que no forman parte de ninguna clave dependen de forma completa de la clave principal. Es decir que no existen dependencias parciales. (Todos los atributos que no son clave principal deben depender únicamente de la clave principal).
En otras palabras podríamos decir que la segunda forma normal está basada en el concepto de dependencia completamente funcional. Una dependencia funcional x \rightarrow y es completamente funcional si al eliminar los atributos A de X significa que la dependencia no es mantenida, esto es que A \in X, X - \{A\} \nrightarrow Y. Una dependencia funcional x \rightarrow y es una dependencia parcial si hay algunos atributos A \in X que pueden ser eliminados de X y la dependencia todavía se mantiene, esto es A \in X, X - \{A\} \rightarrow Y.
Por ejemplo {DNI, ID_PROYECTO} \rightarrow HORAS_TRABAJO (con el DNI de un empleado y el ID de un proyecto sabemos cuántas horas de trabajo por semana trabaja un empleado en dicho proyecto) es completamente dependiente dado que ni DNI \rightarrow HORAS_TRABAJO ni ID_PROYECTO \rightarrow HORAS_TRABAJO mantienen la dependencia. Sin embargo {DNI, ID_PROYECTO} \rightarrowNOMBRE_EMPLEADO es parcialmente dependiente dado que DNI \rightarrow NOMBRE_EMPLEADO mantiene la dependencia.

Tercera Forma Normal (3FN)

 
La tabla se encuentra en 3FN si es 2FN y si no existe ninguna dependencia funcional transitiva entre los atributos que no son clave.
Un ejemplo de este concepto sería que, una dependencia funcional X->Y en un esquema de relación R es una dependencia transitiva si hay un conjunto de atributos Z que no es un subconjunto de alguna clave de R, donde se mantiene X->Z y Z->Y.
Por ejemplo, la dependencia SSN->DMGRSSN es una dependencia transitiva en EMP_DEPT de la siguiente figura. Decimos que la dependencia de DMGRSSN el atributo clave SSN es transitiva vía DNUMBER porque las dependencias SSN→DNUMBER y DNUMBER→DMGRSSN son mantenidas, y DNUMBER no es un subconjunto de la clave de EMP_DEPT. Intuitivamente, podemos ver que la dependencia de DMGRSSN sobre DNUMBER es indeseable en EMP_DEPT dado que DNUMBER no es una clave de EMP_DEPT.
Formalmente, un esquema de relacion R está en 3 Forma Normal Elmasri-Navathe, si para toda dependencia funcional X \rightarrow A, se cumple al menos una de las siguientes condiciones:
  1. X es superllave o clave.
  2. A es atributo primo de R; esto es, si es miembro de alguna clave en R.
Además el esquema debe cumplir necesariamente, con las condiciones de segunda forma normal.

Forma normal de Boyce-Codd (FNBC)

La tabla se encuentra en FNBC si cada determinante, atributo que determina completamente a otro, es clave candidata. Deberá registrarse de forma anillada ante la presencia de un intervalo seguido de una formalizacion perpetua, es decir las variantes creadas, en una tabla no se llegaran a mostrar, si las ya planificadas, dejan de existir.
Formalmente, un esquema de relación R está en FNBC, si y sólo si, para toda dependencia funcional X \rightarrow A válida en R, se cumple que
  1. X es superllave o clave.
De esta forma, todo esquema R que cumple FNBC, está además en 3FN; sin embargo, no todo esquema R que cumple con 3FN, está en FNBC.

Cuarta Forma Normal (4FN)

Una tabla se encuentra en 4FN si, y sólo si, para cada una de sus dependencias múltiples no funcionales X->->Y, siendo X una super-clave que, X es o una clave candidata o un conjunto de claves primarias.

Quinta Forma Normal (5FN)

Una tabla se encuentra en 5FN si:
  • La tabla está en 4FN
  • No existen relaciones de dependencias no triviales que no siguen los criterios de las claves. Una tabla que se encuentra en la 4FN se dice que está en la 5FN si, y sólo si, cada relación de dependencia se encuentra definida por las claves candidatas.

Reglas de Codd

Codd se percató de que existían bases de datos en el mercado las cuales decían ser relacionales, pero lo único que hacían era guardar la información en las tablas, sin estar estas tablas literalmente normalizadas; entonces éste publicó 12 reglas que un verdadero sistema relacional debería tener, en la práctica algunas de ellas son difíciles de realizar. Un sistema podrá considerarse "más relacional" cuanto más siga estas reglas.

Regla No. 1 - La Regla de la información

Toda la información en un RDBMS está explícitamente representada de una sola manera por valores en una tabla.
Cualquier cosa que no exista en una tabla no existe del todo. Toda la información, incluyendo nombres de tablas, nombres de vistas, nombres de columnas, y los datos de las columnas deben estar almacenados en tablas dentro de las bases de datos. Las tablas que contienen tal información constituyen el Diccionario de Datos. Esto significa que todo tiene que estar almacenado en las tablas.
Toda la información en una base de datos relacional se representa explícitamente en el nivel lógico exactamente de una manera: con valores en tablas. Por tanto los metadatos (diccionario, catálogo) se representan exactamente igual que los datos de usuario. Y puede usarse el mismo lenguaje (ej. SQL) para acceder a los datos y a los metadatos (regla 4)

Regla No. 2 - La regla del acceso garantizado

Cada ítem de datos debe ser lógicamente accesible al ejecutar una búsqueda que combine el nombre de la tabla, su clave primaria, y el nombre de la columna.
Esto significa que dado un nombre de tabla, dado el valor de la clave primaria, y dado el nombre de la columna requerida, deberá encontrarse uno y solamente un valor. Por esta razón la definición de claves primarias para todas las tablas es prácticamente obligatoria.

Regla No. 3 - Tratamiento sistemático de los valores nulos

La información inaplicable o faltante puede ser representada a través de valores nulos
Un RDBMS (Sistema Gestor de Bases de Datos Relacionales) debe ser capaz de soportar el uso de valores nulos en el lugar de columnas cuyos valores sean desconocidos.

Regla No. 4 - La regla de la descripción de la base de datos

La descripción de la base de datos es almacenada de la misma manera que los datos ordinarios, esto es, en tablas y columnas, y debe ser accesible a los usuarios autorizados.
La información de tablas, vistas, permisos de acceso de usuarios autorizados, etc, debe ser almacenada exactamente de la misma manera: En tablas. Estas tablas deben ser accesibles igual que todas las tablas, a través de sentencias de SQL (o similar).

Regla No. 5 - La regla del sub-lenguaje Integral

Debe haber al menos un lenguaje que sea integral para soportar la definición de datos, manipulación de datos, definición de vistas, restricciones de integridad, y control de autorizaciones y transacciones.
Esto significa que debe haber por lo menos un lenguaje con una sintaxis bien definida que pueda ser usado para administrar completamente la base de datos.

Regla No. 6 - La regla de la actualización de vistas

Todas las vistas que son teóricamente actualizables, deben ser actualizables por el sistema mismo.
La mayoría de las RDBMS permiten actualizar vistas simples, pero deshabilitan los intentos de actualizar vistas complejas.

Regla No. 7 - La regla de insertar y actualizar

La capacidad de manejar una base de datos con operandos simples aplica no sólo para la recuperación o consulta de datos, sino también para la inserción, actualización y borrado de datos'.
Esto significa que las cláusulas para leer, escribir, eliminar y agregar registros (SELECT, UPDATE, DELETE e INSERT en SQL) deben estar disponibles y operables, independientemente del tipo de relaciones y restricciones que haya entre las tablas.

Regla No. 8 - La regla de independencia física

El acceso de usuarios a la base de datos a través de terminales o programas de aplicación, debe permanecer consistente lógicamente cuando quiera que haya cambios en los datos almacenados, o sean cambiados los métodos de acceso a los datos.
El comportamiento de los programas de aplicación y de la actividad de usuarios vía terminales debería ser predecible basados en la definición lógica de la base de datos, y éste comportamiento debería permanecer inalterado, independientemente de los cambios en la definición física de ésta.

Regla No. 9 - La regla de independencia lógica

Los programas de aplicación y las actividades de acceso por terminal deben permanecer lógicamente inalteradas cuando quiera que se hagan cambios (según los permisos asignados) en las tablas de la base de datos.
La independencia lógica de los datos especifica que los programas de aplicación y las actividades de terminal deben ser independientes de la estructura lógica, por lo tanto los cambios en la estructura lógica no deben alterar o modificar estos programas de aplicación.

Regla No. 10 - La regla de la independencia de la integridad

Todas las restricciones de integridad deben ser definibles en los datos, y almacenables en el catalogo, no en el programa de aplicación.

Las reglas de integridad

  1. Ningún componente de una clave primaria puede tener valores en blanco o nulos (ésta es la norma básica de integridad).
  2. Para cada valor de clave foránea deberá existir un valor de clave primaria concordante. La combinación de estas reglas aseguran que haya integridad referencia.

Regla No. 11 - La regla de la distribución

El sistema debe poseer un lenguaje de datos que pueda soportar que la base de datos esté distribuida físicamente en distintos lugares sin que esto afecte o altere a los programas de aplicación.
El soporte para bases de datos distribuidas significa que una colección arbitraria de relaciones, bases de datos corriendo en una mezcla de distintas máquinas y distintos sistemas operativos y que esté conectada por una variedad de redes, pueda funcionar como si estuviera disponible como en una única base de datos en una sola máquina.
Regla No. 12 - Regla de la no-subversión
Si el sistema tiene lenguajes de bajo nivel, estos lenguajes de ninguna manera pueden ser usados para violar la integridad de las reglas y restricciones expresadas en un lenguaje de alto nivel (como SQL).
Algunos productos solamente construyen una interfaz relacional para sus bases de datos No relacionales, lo que hace posible la subversión (violación) de las restricciones de integridad. Esto no debe ser permitido.